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What experience does UNIGE have on fuel cells?

Department of Civil, Chemical and Environmental Engineering (DICCA)

25 years of scientific research activity

15 years of collaboration with Ansaldo Fuel Cells

3 years of research with ExxonMobil (EMRE, New Jersey)

5 years of experimental tests at KIST (Seul)

5 European Projects with relevant partners

Modelling and experimentation at different scales

“Gas to power” as well as “power to gas” applications

Around 100 scientific papers, 100 degree theses, 10 PhD

In particular, the speaker is
- UNIGE referent for European Energy Research Alliance

- Italian delegate expert in fuel cells at International Maritime Organization (IMO)
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Just an example of the approach...
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What are fuel cells?

Fuel Cells are electrochemical devices able to directly convert the fuel chemical energy in

electrical energy

Advantages

- High efficiency, reduced environmental impact
both chemical and acoustic, absence of moving

parts, size flexibility and modularity

Fuel Cell Types
- Low operating temperature — mainly
automotive and small applications

- High operating temperature — mainly

residential and industrial applications
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Why choose Molten Carbonate Fuel Cells (MCFCs)?

Better than low temperature fuel cells, because...

MCFCs can be fed by natural gas, methane, biogas, syngas and other fuels
MCFCs are less sensitive to contaminants

MCFCs can use less expensive electrode materials

MCFCs can allow cogeneration thanks to high temperature exhaust

Better than other high temperature fuel cells, because...

MCFCs present less complex component structure

MCFCs can be scaled up to higher installed power and with higher efficiency
MCFCs have lower operating temperature avoiding related material problems
MCFCs have a higher technology readiness level
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A further trump card of MCFCs: carbon capture!

MCFCs can be used as CO, concentrators in carbon capture applications

CO,+ 20, +2e - CO;4 - cathode
H, + CO; - —> H,0 + CO, + 2e anode
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- CO, transferred to the anode can be easily segregated

- Power production with 50-55% electrical efficiency

MCFCs are an “active” solution which reduces costs combining carbon capture and power production
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How to use MCFCs 1n maritime applications?

Part of engine exhaust is fed to MCFCs which capture CO, producing energy
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Why MCFCs onboard can be a winning solution?

MCFCs
modularity
allows for
increasing size
when higher
i\ CO, capture /
g were required /4

MCFC can

substitute
auxiliary
ES

co,inthe f  MCFCs
MCFC | don't |
exhaustis | require H, /

<1%, |\  storage

CO, emission constrains can be respted just with a retrofitting action,
while other fuel cell solutions require new ship assessment and propulsion choice
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What perfomance is expected?

Case study

- Engine output: 10 MW

- Engine fuel: HFO (comparable results using LNG)

- CO, emission reduction: 20%

- MCFC fuel: LNG — bio-LNG — super bio-LNG

Simulation results based on plant process analysis as well as
detailed electrochemical kinetics validated on experimental data

- MCFC size: 1187 kW — 766 kW — 591 kW
- CO, stored: 1576 kg/h — 975 kg/h — 785 kg/h
- Fuel consumed by MCFC: 247 kg/h — 149 kg/h — 123 kg/h

Note: bio-LNG = carbon-neutral — super bio-LNG = carbon-negative
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What are we doing? CapLab)»)

ELECTROCHEMICAL CELLS

To develop MCFC technology at each level, we are

promoting a strong European task force and we Universita +
di Genova techn.ologies for the planet

launched the new CapLab laboratory joined
between Ecospray and the University of Genoa.
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